

Lebanon 2nd Round

Evidence for Oil Generation

South Levant Discoveries > Biogenic Gas

Tanin

2011 Gas Discovery, 130ft net pay Lower Miocene 'Tamar' sands. Reserves: Mean 1.1 TCF

Aphrodite

2011 Gas Discovery 310ft net pay Miocene sands Reserves: Mean 7 TCF

Leviathan

2010 Gas Discovery 220ft net pay Lower Miocene sands Reserves: Mean 17 TCF. *Reported deeper

*Reported deeper thermogenic gas zone at 21,000ft

Shimsom

2012 Gas Discovery Reserves: Mean 1 TCF.

Q: Where is the thermogenic light oil in Karish coming from?

Karish

2013 Gas Discovery 180ft net Lower Miocene sands Reserves mean 2-3 TCF

* Producing thermogenic light oil

Tamar

2009 Gas Discovery **2012 onstream.** 460ft net Mid-Lower
Miocene sands
Reserves Mean 9 TCF

Dolphin

2011 Gas discovery 'Tamar' sands Reserves: Mean ca 0.5 TCF

Dalit

2009 Gas Discovery Lower Miocene Sands Reserves: Mean 0.5 TCF

Stratigraphy of the Levant Basin

Source Rocks

- 1. Oligocene
- 2. Paleocene Eocene
- 3. Cenomanian-Turonian
- 4. Jurassic

Basin Modelling

Evidence for Oil Generation

- Evaluate the hydrocarbon potential of defined source rocks
- Investigate the likely pathways of hydrocarbon migration and accumulation
- Evaluate the petroleum system(s) considering timing of generation, expulsion, and migration of hydrocarbons related to the basin's tectonic history

Flowchart for the input geochemical data to the basin modeling

Oligocene-sourced oil

Oligocence source rock encountered at Amathusa and Onasagoras ENI wells

Whole oil gas chromatogram

Burial History & Thermal Maturity for Example Well

Present Day

- U. Cretaceous to Oligocene source rocks modelled as Early Mature.
- Jurassic source rock modelled as Late Mature

3D Basin Modelling: North Levant

- Oligocene Source Expelling oil from Messinian times to Recent
- Oligocene and Paleocene-Eocene source rocks are currently in the "Mid-Mature" stage (0.7-1.0% Ro)

Spectrum

Karish Oil from Oligocene Source Kitchen?

- Long distance oil migration from Oligocene source kitchen in North Levant Basin explains light oil in Karish
- Karish is the South Levant Field nearest to the North Levant oil kitchen

HC Indications - Seeps

High Potential for Oil

Levant Basin 15 to 20°C/km

Meaning of Seeps and Fluid Pipes

Cantarell 2nd largest 35 BBOIP

Scarborough, NW Carnarvon Basin, Australia (Jablonski et al., 2013)

Multi-Episode Focused Fluid Escape

- Syrian arc related inversion structure associated with fluid pipe and pockmark at the seabed
- Reservoir has been recharged 20 times due to continued hydrocarbon generation over the last 1.7 Ma
- Indicates a working petroleum system
- Oil generation supported by nearby oil seep

Early Miocene Reservoir Provenance

Trap 3D Cube View

Meaning of Layer Bound Faults

Lower Miocene Structures Map from 3D

Phoebe

Far less

Structures North and South Levant Basin

Same scale

4.400 4.500 4.600 4.700 4.800 4.900 5.000 5.100 5.200 5.300 5.400 5.500 5.600 5.700 5.800 5.800 5.800 5.900 6.000

complex than compressional structures in South Levant

Leviathan

Ref: Noble Website

15km

Early vs Late Miocene Provenance?

As the Early Miocene seaway through to the Persian Gulf closed, so no eastward sediment drift from the Nile.

The northward collision of the Arabian plate caused the Palmyride Inversion, which may have created a local source for the Late Miocene.

Base Messinian Evaporites depth

"AVO" quick-look; (Far-Near)*Far angle stacks

Very positive AVO responses at Late Miocene level.

Base Messinian Structures and DHIs?

- · Hard reflection that is discordant with the geometry of the anticlines reflections.
- The discordant reflection terminates against the inner side of the anticline.

Block 5: Resource Potential

- 1) 25 + structures Lower Miocene 30-50 TCF or **5 to 8.3 BBOE**
- 2) 2 large low relief structures Upper Miocene Level (three plays)
 8 -15 TCF or 1.3 to 2.5 BBOE potential resources

Block 3: Resource Potential

- 17 + structures Lower Miocene
 15-35 TCF or 2.5 to 6 BBOE potential resources.
- 2) 2-3 large low relief structures at Upper Miocene
 8 -15 TCF or 1.3 to 2.5 BBOE potential resources

3) Block 1 Pinch-out play in north unquantified.

Lebanon 2019 License Round Opportunity

Blocks announced Nov '18

Pre qualification Q1'19

Bidding from May to Oct '19

Awards 4Q '19

